Magnetoelectric Multiferroic Composites

نویسنده

  • M. I. Bichurin
چکیده

Magnetoelectric (ME) multiferroics are materials in which ferromagnetism and ferroelectricity occur simultaneously and coupling between the two is enabled. Applied magnetic field H gives rise to an induced polarization P which can be expressed in terms of magnetic field by the expression, P=┙H, where ┙ is the ME-susceptibility tensor. Most of the known single-phase ME materials are known to show a weak ME coupling (Fiebig, 2005; Kita et al., 1988; Wang et al., 2003; Prellier et al., 2005; Cheong et al., 2007). A composite of piezomagnetic and piezoelectric phases is expected to have relatively strong ME coupling. ME interaction in a composite manifests itself as inducing the electrical voltage across the sample in an applied ac magnetic field and arises due to combination of magnetostriction in magnetic phase and piezoelectricity in piezoelectric phase through mechanical coupling between the components (Ryu et al., 2001; Nan et al., 2008; Dong et al., 2003; Cai et al., 2004; Srinivasan et al., 2002). In last few years, strong magneto-elastic and elasto-electric coupling has been achieved through optimization of material properties and proper design of transducer structures. Lead zirconate titanate (PZT)-ferrite and PZT-Terfenol-D are the most studied composites to-date (Dong et al., 2005; Dong et al.,2006b; Zheng et al., 2004a; Zheng et al., 2004b). One of largest ME voltage coefficient of 500 Vcm-1Oe-1 was reported recently for a high permeability magnetostrictive piezofiber laminate (Nan et al., 2005; Liu et al., 2005). These developments have led to magnetoelectric structures that provide high sensitivity over a varying range of frequency and DC bias fields enabling the possibility of practical applications. In this paper, we focus on four broad objectives. First, we discuss detailed mathematical modeling approaches that are used to describe the dynamic behavior of ME coupling in magnetostrictive-piezoelectric multiferroics at low-frequencies and in electromechanical resonance (EMR) region. Expressions for ME coefficients were obtained using the solution of elastostatic/elastodynamic and electrostatic/magnetostatic equations. The ME voltage coefficients were estimated from the known material parameters. The basic methods developed for decreasing the resonance frequencies were analyzed. The second type of resonance phenomena occurs in the magnetic phase of the magnetoelectric composite at much higher frequencies, called as ferromagnetic resonance (FMR). The estimates for electric field induced shift of magnetic resonance line were derived and analyzed for

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effective magnetoelectroelastic moduli of matrix-based multiferroic composites

In this paper, we develop a mean field Mori-Tanaka model T. Mori and K. Tanaka, Acta. Metall. 21, 571 1973 to calculate the effective magnetoelectroelastic moduli of matrix-based multiferroic composites, emphasizing the effects of shape and orientation distribution of second phase particles that have not been investigated before. Through a systematic study, it is observed that laminated composi...

متن کامل

Status and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications

Multiferroic magnetoelectric (ME) composites are attractive materials for various electrically and magnetically cross-coupled devices. Many studies have been conducted on fundamental understanding, fabrication processes, and applications of ME composite material systems in the last four decades which has brought the technology closer to realization in practical devices. In this article, we pres...

متن کامل

Closed-form solutions to the effective properties of fibrous magnetoelectric composites and their applications

Magnetoelectric coupling is of interest for a variety of applications, but is weak in natural materials. Strain-coupled fibrous composites of piezoelectric and piezomagnetic materials are an attractive way of obtaining enhanced effective magnetoelectricity. This paper studies the effective magnetoelectric behaviors of two-phase multiferroic composites with periodic array of inhomogeneities. For...

متن کامل

A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect

The lead-free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3 - 0.5(Ba0.7Ca0.3)TiO3 (BCZT) is a promising component for multifunctional multiferroics due to its excellent room temperature piezoelectric properties. Having a composition close to the polymorphic phase boundary between the orthorhombic and tetragonal phases, it deserves a case study for analysis of its potential for modern electronics applicatio...

متن کامل

Influence of Ga-concentration on the electrical and magnetic properties of magnetoelectric CoGaxFe2− xO4/BaTiO3 composite

Multiferroic materials exhibit magnetoelectric (ME) coupling and promise new device applications including magnetic sensors, generators, and filters. An effective method for developing ME materials with enhanced ME effect is achieved by the coupling through the interfacial strain between piezoelectric and magnetostrictive materials. In this study, the electrical and magnetic properties of Ga do...

متن کامل

Correlation of High Magnetoelectric Coupling with Oxygen Vacancy Superstructure in Epitaxial Multiferroic BaTiO3-BiFeO3 Composite Thin Films

Epitaxial multiferroic BaTiO₃-BiFeO₃ composite thin films exhibit a correlation between the magnetoelectric (ME) voltage coefficient αME and the oxygen partial pressure during growth. The ME coefficient αME reaches high values up to 43 V/(cm·Oe) at 300 K and at 0.25 mbar oxygen growth pressure. The temperature dependence of αME of the composite films is opposite that of recently-reported BaTiO₃...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012